Structures of graph classes and of their excluded minors

Clément Rambaud

Université Côte d'Azur, Inria, CNRS, I3S

December 3, 2025

Committee:

David Eppstein
Michał Pilipczuk
Dimitrios Thilikos

reviewer reviewer reviewer

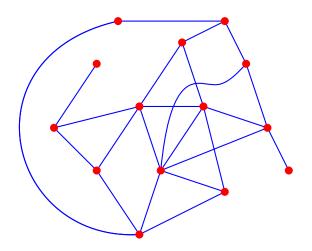
Marthe Bonamy Christophe Crespelle Stéphan Thomassé

examinator examinator examinator

Frédéric Havet supervisor

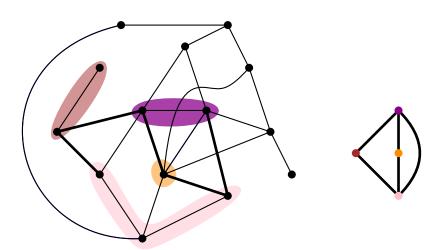
Graphs

A graph is made of vertices and edges.



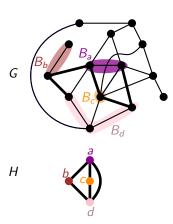
Graph minors and models

A **minor** is obtained by contracting *disjoint connected* subgraphs, and removing some vertices and edges.



Graph minors and models

A minor is obtained by contracting *disjoint connected* subgraphs, and removing some vertices and edges.



A family $(B_x \mid x \in V(H))$ is a model of H in G if

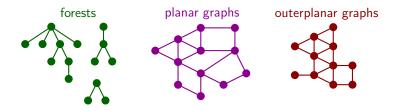
- 1. $G[B_x]$ for $x \in V(H)$ are disjoint and connected, and
- 2. there is an **edge** between B_x and B_y for every $xy \in E(H)$.

Minor-closed classes of graphs

C is minor-closed if

$$\forall G \in \mathcal{C}, \forall H \text{ minor of } G, H \in \mathcal{C}.$$

Examples:



Many usual classes of graphs are minor-closed.

 \rightarrow we want to understand their structure.

Minor-closed classes of graphs and excluded minors

Theorem (Robertson-Seymour Theorem)

Let $\mathcal C$ be a minor-closed class of graphs. There exists a finite list X_1,\ldots,X_ℓ of graphs such that

 $\mathcal C$ is the class of $\{X_1,\ldots,X_\ell\}$ -minor-free graphs.

 $\text{l.e. } \forall G, \quad G \in \mathcal{C} \quad \Leftrightarrow \quad \forall i \in [\ell], X_i \text{ is not a minor of } G.$

Examples:

$$G$$
 forest \Leftrightarrow G $\{K_3\}$ -minor-free G planar \Leftrightarrow G $\{K_5, K_{3,3}\}$ -minor-free G outerplanar \Leftrightarrow G $\{K_4, K_{2,3}\}$ -minor-free

Minor-closed classes of graphs and excluded minors

Theorem (Robertson-Seymour Theorem)

Let C be a minor-closed class of graphs. There exists a finite list X_1, \ldots, X_ℓ of graphs such that

 \mathcal{C} is the class of $\{X_1,\ldots,X_\ell\}$ -minor-free graphs.

I.e. $\forall G, \quad G \in \mathcal{C} \quad \Leftrightarrow \quad \forall i \in [\ell], X_i \text{ is not a minor of } G.$

General question:

What are the links between the structure of X_1, \ldots, X_ℓ and the structure of $\{X_1, \ldots, X_\ell\}$ -minor-free graphs?

Some tools of Graph Minor Theory

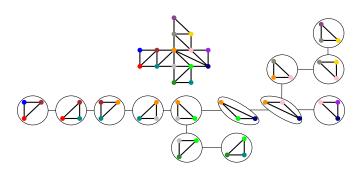
- tree decompositions and treewidth
 - → Grid-Minor Theorem (Robertson and Seymour)

- path decompositions and pathwidth
 - → Excluded-Tree-Minor Theorem (Robertson and Seymour)

Tree decompositions & treewidth

Tree decomposition: $(T, (W_x \mid x \in V(T)))$ such that

- 1. $\forall uv \in E(G), \exists x \in V(T) \text{ s.t. } u, v \in W_x,$
- 2. $T[\{x \in V(T) \mid u \in W_x\}]$ is nonempty and connected, $\forall u \in V(G)$.



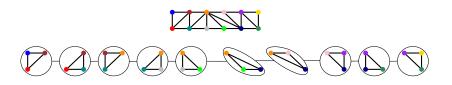
Width = $\max_{x \in V(T)} |W_x| - 1$.

Treewidth: tw(G) = minimum width of a tree decomposition.

Path decompositions & pathwidth

Path decomposition: (W_1, \ldots, W_ℓ) such that

- 1. $\forall uv \in E(G), \exists i \in [\ell] \text{ s.t. } u, v \in W_i$
- 2. $\{i \in [\ell] \mid u \in W_i\}$ is a nonempty interval, $\forall u \in V(G)$.



 $\mathsf{Width} = \mathsf{max}_{1 \leqslant i \leqslant \ell} |W_i| - 1.$

Pathwidth: pw(G) = minimum width of a path decomposition.

Bag: set of the form W_i .

Adhesion: set of the form $W_i \cap W_{i+1}$.

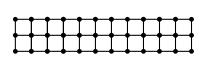
Contributions

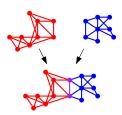
This thesis is based on:

- Excluding a rectangular grid Rambaud
- Quickly excluding an apex-forest Hodor, La, Micek, Rambaud; to appear in SIDMA
- ► The grid-minor theorem revisited Dujmović, Hickingbotham, Hodor, Joret, La, Micek, Morin, Rambaud, Wood: in SODA 24 and Combinatorica
- Weak coloring numbers of minor-closed graph classes Hodor, La, Micek, Rambaud; in SODA 25
- ► Centered colorings in minor-closed graph classes Hodor, La, Micek, Rambaud; to appear in SODA 26

Part I

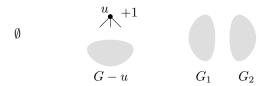
Excluding a rectangular grid





The treedepth is the *largest* parameter td satisfying

- 1. $td(\emptyset) = 0$,
- 2. $td(G) \leq 1 + td(G u)$, and
- 3. $td(G_1 \sqcup G_2) \leqslant max\{td(G_1), td(G_2)\}.$



The treedepth is the *largest* parameter td satisfying

- 1. $td(\emptyset) = 0$,
- 2. $td(G) \leq 1 + td(G u)$, and
- 3. $td(G_1 \sqcup G_2) \leq max\{td(G_1), td(G_2)\}.$

 $\mathrm{td}\leqslant 0$

The treedepth is the largest parameter td satisfying

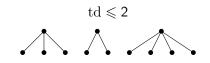
- 1. $td(\emptyset) = 0$,
- 2. $td(G) \leq 1 + td(G u)$, and
- 3. $td(G_1 \sqcup G_2) \leqslant max\{td(G_1), td(G_2)\}.$

$$\mathrm{td} \leqslant 1$$

• • • • • • • •

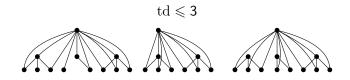
The treedepth is the *largest* parameter td satisfying

- 1. $td(\emptyset) = 0$,
- 2. $td(G) \leq 1 + td(G u)$, and
- 3. $td(G_1 \sqcup G_2) \leqslant max\{td(G_1), td(G_2)\}.$



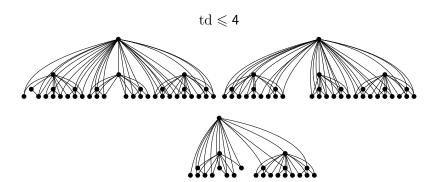
The treedepth is the *largest* parameter td satisfying

- 1. $td(\emptyset) = 0$,
- 2. $td(G) \leq 1 + td(G u)$, and
- 3. $td(G_1 \sqcup G_2) \leqslant max\{td(G_1), td(G_2)\}.$



The treedepth is the largest parameter td satisfying

- 1. $td(\emptyset) = 0$,
- 2. $td(G) \leq 1 + td(G u)$, and
- 3. $td(G_1 \sqcup G_2) \leqslant max\{td(G_1), td(G_2)\}.$



Treedepth of paths

Treedepth of paths

Property

Paths have unbounded treedepth:

$$\operatorname{td}(P_{2^k}) > k$$

Proof: by induction on k.

Consequence: a long path is a certificate of large treedepth.

Graphs with no long paths

Theorem (Nešetřil and Ossona de Mendez) If G has no path of length ℓ , then

$$td(G) \leqslant \ell$$
.

Proof: a DFS.

Graphs with no long paths

Theorem (Nešetřil and Ossona de Mendez) If G has no path of length ℓ , then

$$td(G) \leq \ell$$
.

Proof: a DFS.

Consequence:

Theorem (Nešetřil and Ossona de Mendez)

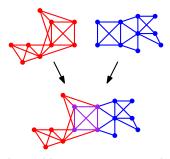
The following are equivalent.

- 1. C has bounded td, i.e. $\exists N, \forall G \in C, \operatorname{td}(G) \leq N$,
- 2. there is an integer ℓ such that no graph in $\mathcal C$ contains P_ℓ as a subgraph/minor.

Treewidth

The treewidth is the largest parameter satisfying

- 1. $tw(\emptyset) = -1$,
- 2. $tw(G) \leq 1 + tw(G u)$, and
- 3. $\operatorname{tw}(G) \leq \max\{\operatorname{tw}(G_1), \operatorname{tw}(G_2)\}\$ if G is a *clique-sum* of G_1 and G_2 .

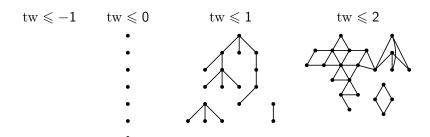


(and possibly removing some edges)

Treewidth

The treewidth is the largest parameter satisfying

- 1. $tw(\emptyset) = -1$,
- 2. $\operatorname{tw}(G) \leqslant 1 + \operatorname{tw}(G u)$, and
- 3. $tw(G) \leq max\{tw(G_1), tw(G_2)\}\$ if G is a *clique-sum* of G_1 and G_2 .



Treewidth and grids

Property

If H is a minor of G, then

$$tw(H) \leq tw(G)$$
.

Property

Grids have unbounded treewidth.

Treewidth and grids

Property

Grids have unbounded treewidth.

Theorem (Grid-Minor Theorem, Robertson and Seymour; 1986)

The following are equivalent.

- 1. C has bounded tw, i.e. $\exists N, \forall G \in C, \text{tw}(G) \leq N$,
- 2. there is an integer ℓ such that no graph in $\mathcal C$ contains the $\ell \times \ell$ grid as a minor.

k-treedepth

The k-treedepth is the largest parameter satisfying

- 1. $\operatorname{td}_k(\emptyset) = 0$,
- 2. $\operatorname{td}_k(G) \leq 1 + \operatorname{td}_k(G u)$, and
- 3. $\operatorname{td}_k(G) \leq \max\{\operatorname{td}_k(G_1),\operatorname{td}_k(G_2)\}\$ if G is a (< k)-clique-sum of G_1 and G_2 .



k-treedepth

The k-treedepth is the largest parameter satisfying

- 1. $td_k(\emptyset) = 0$,
- 2. $\operatorname{td}_k(G) \leq 1 + \operatorname{td}_k(G u)$, and
- 3. $\operatorname{td}_k(G) \leq \max\{\operatorname{td}_k(G_1),\operatorname{td}_k(G_2)\}\$ if G is a (< k)-clique-sum of G_1 and G_2 .

Examples:

- ightharpoonup $\operatorname{td}_1 = \operatorname{td}$
- $ightharpoonup {
 m td}_2={
 m td}_2$ (Huynh, Joret, Micek, Seweryn, and Wollan; 2020)
- ightharpoonup $td_{+\infty} = 1 + tw$

Obstructions for *k*-treedepth

Property

If H is a minor of G, then

$$\operatorname{td}_k(H) \leqslant \operatorname{td}_k(G).$$

Obstructions for k-treedepth

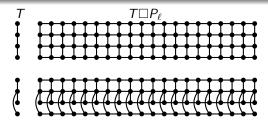
Property

If H is a minor of G, then

$$\operatorname{td}_k(H) \leqslant \operatorname{td}_k(G)$$
.

Property

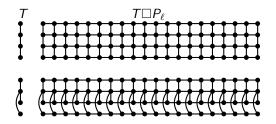
For every tree T on k vertices, $\{T \square P_\ell\}_{\ell \geqslant 1}$ have unbounded td_k .



Obstructions for k-treedepth

Property

For every tree T on k vertices, $\{T \square P_\ell\}_{\ell \geqslant 1}$ have unbounded td_k .



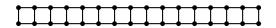
Theorem (Rambaud; 2025+)

The following are equivalent.

- 1. C has bounded td_k , i.e. $\exists N, \forall G \in C, td_k(G) \leq N$,
- 2. there is an integer ℓ such that for every tree T on k vertices, no graph in C contains $T \square P_{\ell}$ as a minor.

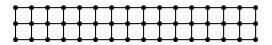
Obstructions for td_1

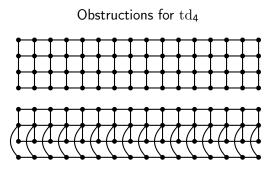
Obstructions for td_2



Theorem (Huynh, Joret, Micek, Seweryn, and Wollan; 2020) A class of graphs has bounded td_2 iff it excludes a *ladder* as a minor.

Obstructions for td_3





Excluding the $k \times \ell$ grid

Setting: *k* fixed.

Corollary (Rectangular Grid-Minor Theorem)

Graphs excluding the $k \times \ell$ grid as a minor have bounded td_{2k-1} .

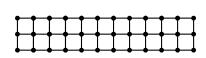
Excluding the $k \times \ell$ grid

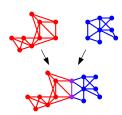
Setting: *k* fixed.

Corollary (Rectangular Grid-Minor Theorem)

Graphs excluding the $k \times \ell$ grid as a minor have bounded td_{2k-1} .

height of the excluded grid \leftrightarrow size of the clique-sums

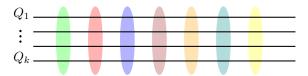




Theorem (Rambaud; 2025+)

If, for every tree T on k vertices, $T \square P_{\ell}$ is not a minor of G, then

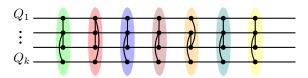
$$\operatorname{td}_k(G) \leqslant f(k,\ell).$$



Theorem (Rambaud; 2025+)

If, for every tree T on k vertices, $T \square P_{\ell}$ is not a minor of G, then

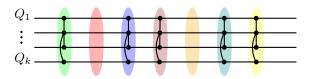
$$\operatorname{td}_k(G) \leqslant f(k,\ell).$$



Theorem (Rambaud; 2025+)

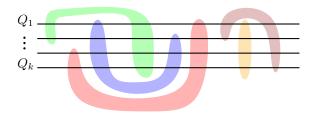
If, for every tree T on k vertices, $T \square P_{\ell}$ is not a minor of G, then

$$\operatorname{td}_k(G) \leqslant f(k,\ell).$$



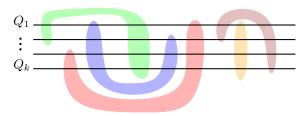
Lemma

Let Q_1, \ldots, Q_k be k disjoint paths. If there are $f(k, \ell)$ pairwise disjoint connected subgraphs each intersecting every Q_i , then G contains a $T \square P_\ell$ as a minor, for some tree T on k vertices.



Lemma

Let Q_1, \ldots, Q_k be k disjoint paths. If there are $f(k, \ell)$ pairwise disjoint connected subgraphs each intersecting every Q_i , then G contains a $T \square P_{\ell}$ as a minor, for some tree T on k vertices.



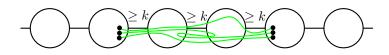
Lemma (Folklore)

For every family $\mathcal F$ of connected subgraphs, if there are no d+1 disjoint members of $\mathcal F$, then there is a hitting set of size at most $d\cdot(\operatorname{tw}(\mathcal G)+1)$.

Theorem (Robertson and Seymour, unpublished)

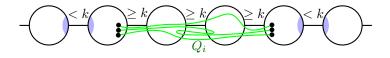
There is a path decomposition (W_1, \ldots, W_ℓ) of width $\mathrm{pw}(G)$ such that for every $1 \leqslant x < y \leqslant \ell$, for every $k \geqslant 0$,

- 1. there exists $z \in \{x, \dots, y-1\}$ such that $|W_z \cap W_{z+1}| < k$, or
- 2. there are k disjoint (W_x, W_y) -paths in G.



Assumptions: no $T \square P_{\ell}$ minor for every tree T on k vertices.

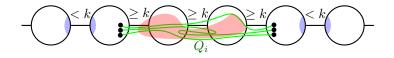
Goal: $td_k(G) \leq f(k, \ell, pw(G))$.



Not too many disjoint connected subgraphs intersecting every Q_i .

Assumptions: no $T \square P_{\ell}$ minor for every tree T on k vertices.

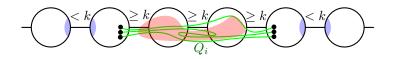
Goal: $td_k(G) \leq f(k, \ell, pw(G))$.



Not too many disjoint connected subgraphs intersecting every Q_i \Rightarrow small hitting set.

Assumptions: no $T \square P_{\ell}$ minor for every tree T on k vertices.

Goal: $td_k(G) \leq f(k, \ell, pw(G))$.



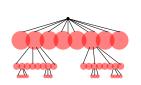
Not too many disjoint connected subgraphs intersecting every $Q_i \Rightarrow$ small hitting set.

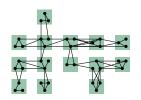
 \rightarrow induction on the components of what remains.

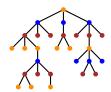
$$\operatorname{td}_k(G) \leqslant 2(k-1) + f(k,\ell)(\operatorname{tw}(G) + 1) + \operatorname{induction}(\operatorname{pw}(G) - 1)$$

Part II

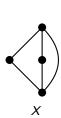
Rooted minors and applications

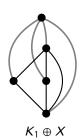






Adding an apex



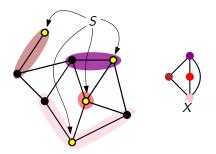


Question:

How to deduce a structure for $(K_1 \oplus X)$ -minor-free graphs, knowing a structure on X-minor-free graphs ?

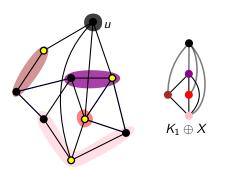
Rooted models

Let $S \subseteq V(G)$. A model $(B_x \mid x \in V(X))$ of X is S-rooted if $B_x \cap S \neq \emptyset$ for every $x \in V(X)$.



Rooted models

Let $S \subseteq V(G)$. A model $(B_x \mid x \in V(X))$ of X is S-rooted if $B_x \cap S \neq \emptyset$ for every $x \in V(X)$.



Observation

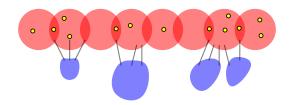
N(u)-rooted model of X in $G - u \Rightarrow \text{model of } K_1 \oplus X$ in G.

Setting: $S \subseteq V(G)$, X a forest

Theorem (Hodor, La, Micek, Rambaud; 2024+)

No S-rooted model of X

 \Rightarrow pathwidth "focused on S" at most 2|V(X)| - 2.



Setting: $S \subseteq V(G)$, X a forest

Theorem (Hodor, La, Micek, Rambaud; 2024+)

No S-rooted model of X

 \Rightarrow pathwidth "focused on S" at most 2|V(X)| - 2.

Corollary

No model of $K_1 \oplus X \Rightarrow \textit{layered pathwidth} \text{ at most } 2|V(X)|-1.$

Setting: $S \subseteq V(G)$, X a forest

Theorem (Hodor, La, Micek, Rambaud; 2024+)

No S-rooted model of X

 \Rightarrow pathwidth "focused on S" at most 2|V(X)| - 2.

Corollary

No model of $K_1 \oplus X \Rightarrow layered \ pathwidth \ at most \ 2|V(X)| - 1$.

Setting: $S \subseteq V(G)$, X a forest

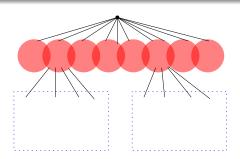
Theorem (Hodor, La, Micek, Rambaud; 2024+)

No S-rooted model of X

 \Rightarrow pathwidth "focused on S" at most 2|V(X)| - 2.

Corollary

No model of $K_1 \oplus X \Rightarrow layered \ pathwidth \ at most \ 2|V(X)| - 1$.



Setting: $S \subseteq V(G)$, X a forest

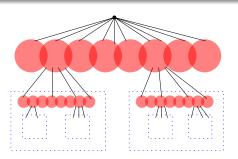
Theorem (Hodor, La, Micek, Rambaud; 2024+)

No S-rooted model of X

 \Rightarrow pathwidth "focused on S" at most 2|V(X)| - 2.

Corollary

No model of $K_1 \oplus X \Rightarrow layered \ pathwidth \ at most \ 2|V(X)|-1$.



Setting: $S \subseteq V(G)$, X a forest

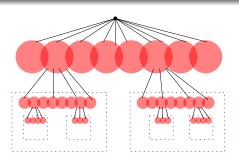
Theorem (Hodor, La, Micek, Rambaud; 2024+)

No S-rooted model of X

 \Rightarrow pathwidth "focused on S" at most 2|V(X)| - 2.

Corollary

No model of $K_1 \oplus X \Rightarrow \textit{layered pathwidth} \text{ at most } 2|V(X)|-1.$



Setting: $S \subseteq V(G)$, X a forest

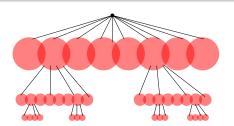
Theorem (Hodor, La, Micek, Rambaud; 2024+)

No S-rooted model of X

 \Rightarrow pathwidth "focused on S" at most 2|V(X)| - 2.

Corollary

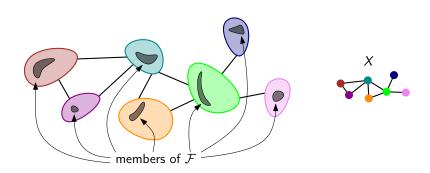
No model of $K_1 \oplus X \Rightarrow layered \ pathwidth \ at most \ 2|V(X)| - 1$.



More than adding one vertex: rich models

Let \mathcal{F} be a family of connected subgraphs of G. A model $(B_x \mid x \in V(X))$ of X is \mathcal{F} -rich if

$$\forall x \in V(X), \exists F \in \mathcal{F}, F \subseteq G[B_x].$$



More than adding one vertex: rich models

Let \mathcal{F} be a family of connected subgraphs of G. A model $(B_x \mid x \in V(X))$ of X is \mathcal{F} -rich if

$$\forall x \in V(X), \exists F \in \mathcal{F}, F \subseteq G[B_x].$$

We are now looking for properties of the form:

No \mathcal{F} -rich model of $X \Rightarrow$ well-structured hitting set Z for \mathcal{F} .

 \rightarrow This allows to set up inductions on the excluded minor.

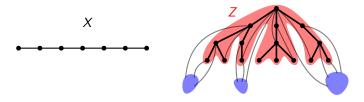
Rich models vs hitting sets

Assuming tw(G) bounded:

no \mathcal{F} -rich model of $X \Rightarrow$ hitting set Z of \mathcal{F} with |Z| bounded.

Rich models vs hitting sets

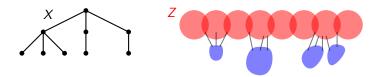
Assuming tw(G) bounded:



no \mathcal{F} -rich model of $X \Rightarrow$ hitting set \mathbb{Z} of \mathcal{F} with $td(G, \mathbb{Z})$ bounded.

Rich models vs hitting sets

Assuming tw(G) bounded:



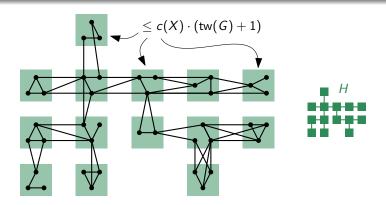
no \mathcal{F} -rich model of $X \Rightarrow$ hitting set \mathbb{Z} of \mathcal{F} with $pw(G, \mathbb{Z})$ bounded.

Application: product structure

Theorem (DHHJLMMRW; 2024+)

For every X-minor-free graph G, there exists a graph H such that

- 1. $tw(H) \leq 2^{td(X)} 2$, and
- 2. $G \subseteq H \boxtimes K_{c(X)\cdot (\operatorname{tw}(G)+1)}$.



 $\varphi \colon V(G) \to C$ is *q*-centered if for every connected subgraph H of G, either

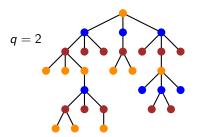
- 1. $|\varphi(V(H))| > q$, or
- 2. there is a color $c \in C$ that appears exactly once in V(H).

Notation: $cen_q(G) = min \# of colors in a q-centered coloring.$

 $\varphi \colon V(G) \to C$ is *q*-centered if for every connected subgraph H of G, either

- 1. $|\varphi(V(H))| > q$, or
- 2. there is a color $c \in C$ that appears exactly once in V(H).

Notation: $cen_q(G) = min \# of colors in a q-centered coloring.$



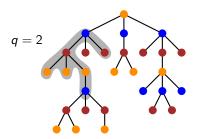
Property

Trees have q-centered colorings using q + 1 colors.

 $\varphi \colon V(G) \to C$ is *q*-centered if for every connected subgraph H of G, either

- 1. $|\varphi(V(H))| > q$, or
- 2. there is a color $c \in C$ that appears exactly once in V(H).

Notation: $cen_q(G) = min \# of colors in a q-centered coloring.$



Property

Trees have q-centered colorings using q + 1 colors.

 $\varphi \colon V(G) \to C$ is *q*-centered if for every connected subgraph H of G, either

- 1. $|\varphi(V(H))| > q$, or
- 2. there is a color $c \in C$ that appears exactly once in V(H).

Notation: $cen_q(G) = min \# of colors in a q-centered coloring.$

Theorem (Mi. Pilipczuk and Siebertz; 2019)

 K_t -minor-free graphs have $\operatorname{cen}_q(\cdot) \leqslant \mathcal{O}(q^{f(t)})$.

Theorem (Dębski, Felsner, Micek, and Schröder; 2021)

There are K_t -minor-free graphs with $\operatorname{cen}_q(\cdot) \geqslant \Omega(q^{t-2})$.

 $\varphi \colon V(G) \to C$ is *q*-centered if for every connected subgraph H of G, either

- 1. $|\varphi(V(H))| > q$, or
- 2. there is a color $c \in C$ that appears exactly once in V(H).

Notation: $cen_q(G) = min \# of colors in a q-centered coloring.$

Theorem (Mi. Pilipczuk and Siebertz; 2019)

 K_t -minor-free graphs have $\operatorname{cen}_q(\cdot) \leqslant \mathcal{O}(q^{f(t)})$.

Theorem (Dębski, Felsner, Micek, and Schröder; 2021)

There are K_t -minor-free graphs with $\operatorname{cen}_q(\cdot) \geqslant \Omega(q^{t-2})$.

Theorem (Hodor, La, Micek, Rambaud; 2025+)

 K_t -minor-free graphs have $\operatorname{cen}_q(\cdot) \leqslant \mathcal{O}(q^{t-1})$.

 $\varphi \colon V(G) \to C$ is *q*-centered if for every connected subgraph H of G, either

- 1. $|\varphi(V(H))| > q$, or
- 2. there is a color $c \in C$ that appears exactly once in V(H).

Notation: $cen_q(G) = min \# of colors in a q-centered coloring.$

Theorem (Mi. Pilipczuk and Siebertz; 2019)

 K_t -minor-free graphs have $\operatorname{cen}_q(\cdot) \leqslant \mathcal{O}(q^{f(t)})$.

Theorem (Hodor, La, Micek, Rambaud; 2025+)

Given X_1, \ldots, X_ℓ , one can determine

$$\max \left\{ \operatorname{cen}_q(G) \mid G \mid X_1, \dots, X_\ell \right\}$$
-minor-free

up to a $\mathcal{O}(q)$ -factor.

Centered colorings: known lower bounds

$$\mathcal{R}_1$$
 \mathcal{S}_2 \mathbb{T} $\mathcal{R}_1 = \{ \text{edgeless graphs} \}$ $\mathcal{R}_2 = \{ \text{linear forests} \}$ \mathcal{S}_3 $\mathcal{S}_{t+1} = \mathbb{T}(\mathcal{S}_t)$ \mathcal{R}_3

Theorem (Dębski, Felsner, Micek, and Schröder; 2021)
$$\max_{G \in \mathcal{R}_t} \operatorname{cen}_q(G) \geqslant \Omega(q^{t-1})$$

$$\max_{G \in \mathcal{R}_t} \operatorname{cen}_q(G) \geqslant \Omega(q^{t-2} \log q)$$

 $G \in S_t$

Generic bounds

ightarrow Up to a $\mathcal{O}(q)$ -factor, that's the only constructions.

Theorem (Hodor, La, Micek, Rambaud; 2025+)

Let $t \geqslant 3$ and let C be a minor-closed class of graphs.

1. If C excludes a member of R_t , then

$$\max_{G \in \mathcal{C}} \operatorname{cen}_q(G) \leqslant \mathcal{O}(q^{t-1} \log q).$$

2. If C excludes a member of S_t , then

$$\max_{G \in \mathcal{C}} \operatorname{cen}_q(G) \leqslant \mathcal{O}(q^{t-1}).$$

Always gives a bound tight up to a $\mathcal{O}(q)$ -factor.

Generic bounds — bounded treewidth

For bounded treewidth graphs,

 \rightarrow Up to a $\mathcal{O}(1)$ -factor, that's the only constructions.

Theorem (Hodor, La, Micek, Rambaud; 2025+)

Let $t \ge 3$ and let C be a minor-closed class of graphs having bounded treewidth.

1. If \mathcal{C} excludes a member of \mathcal{R}_t , then

$$\max_{G \in \mathcal{C}} \operatorname{cen}_q(G) \leqslant \mathcal{O}(q^{t-2} \log q).$$

2. If C excludes a member of S_t , then

$$\max_{G \in \mathcal{C}} \operatorname{cen}_q(G) \leqslant \mathcal{O}(q^{t-2}).$$

Always gives a bound tight up to a $\mathcal{O}(1)$ -factor.

Other similar bounds

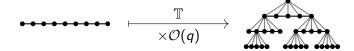
We obtain similar bounds for

- weak coloring numbers,
- ► fractional td-fragility rates,

$$\{\mathrm{cen}, \mathrm{wcol}, \mathrm{ftdfr}\} \times \{\mathrm{tw} \!<\! +\infty, \mathrm{tw} \!=\! +\infty\} \times \{\mathcal{R}_t, \mathcal{S}_t\} = 12 \text{ bounds}.$$

Our approach: find the correct " \mathcal{F} -rich/ \mathcal{F} -hitting-set" statement

- 1. separate base cases,
- 2. one common induction step $\mathcal{X} \mapsto \mathbb{T}(\mathcal{X})$.



Conclusion and open problems

Problem

Find other applications of rooted/rich models.

What about topological minors?

Conclusion and open problems

Problem

Find other applications of rooted/rich models.

What about topological minors?

Conjecture (Thomas; 1989)

Every minor-monotone graph parameter admits finitely many classes of obstructions.

Examples:

```
\begin{array}{ll} \operatorname{tw} \leftrightarrow \{\operatorname{planar\ graphs}\} & (\operatorname{Robertson\ and\ Seymour}) \\ \operatorname{pw} \leftrightarrow \{\operatorname{forests}\} & (\operatorname{Robertson\ and\ Seymour}) \\ \operatorname{td}_k \leftrightarrow \{\{T \square P_\ell \mid \ell\} \mid |V(T)| = k\} \end{array}
```

Conclusion and open problems

Problem

Find other applications of rooted/rich models.

What about topological minors?

Conjecture (Thomas; 1989)

Every minor-monotone graph parameter admits finitely many classes of obstructions.

Examples:

```
\begin{array}{ll} \operatorname{tw} \leftrightarrow \{\operatorname{planar\ graphs}\} & (\operatorname{Robertson\ and\ Seymour}) \\ \operatorname{pw} \leftrightarrow \{\operatorname{forests}\} & (\operatorname{Robertson\ and\ Seymour}) \\ \operatorname{td}_k \leftrightarrow \{\{T \square P_\ell \mid \ell\} \mid |V(T)| = k\} \end{array}
```

Thank you!